Loading [Contrib]/a11y/accessibility-menu.js




<<234567>>
21.

Two line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=z$ intersect at a point , if k is equal to 


A) $\frac{2}{9}$

B) $\frac{1}{2}$

C) $\frac{9}{2}$

D) $\frac{1}{6}$



22.

If $\triangle_{r}=\begin{bmatrix}2r-1 & ^{m}C_{r}&1 \\m^{2}-1 &2^{m}&m+1\\\sin^{2}(m^{2})&\sin^{2}(m) &\sin^{2}(m+1) \end{bmatrix}$, then  the value of  $\sum_{r=0}^{m}\triangle_{r}$  is 


A) 1

B) 0

C) 2

D) none of these



23.

Let f'(x) , be differentiable $\forall x $ . if f(1)=-2 and $f'(x)\geq 2\forall x \in[1,6]$, then 


A) f(6) < 8

B) f(6) $\geq$ 8

C) f(6) $\geq$ 5

D) f(6) $\leq$ 5



24.


If $\triangle (x)=\begin{bmatrix}1 & \cos x&1-\cos x\\1+\sin x & \cos x &1+\sin x-\cos x\\ \sin x&\sin x   &1 \end{bmatrix}$

then   $\int_{0}^{\pi/4} \triangle(x) dx$ is equal to 


A) $\frac{1}{4}$

B) $\frac{1}{2}$

C) 0

D) -$\frac{1}{4}$



25.

If the points (1,2,3) and (2,-1,0) lie on the opposite sides of the plane 2x+3y-2z=k. then 


A) k < 1

B) k > 2

D) k < 1 or k > 2

E) 1 < k < 2



<<234567>>